If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8z^2+4z)/2z=0
Domain of the equation: 2z!=0We multiply all the terms by the denominator
z!=0/2
z!=0
z∈R
(8z^2+4z)=0
We get rid of parentheses
8z^2+4z=0
a = 8; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·8·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*8}=\frac{-8}{16} =-1/2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*8}=\frac{0}{16} =0 $
| x+4=4x+11=180 | | B=5/4(j-63) | | 2(u+5)=4u-8 | | 12z-2(14z+3)=-16z | | 100-r=80 | | (8z^2+4z)/2=0 | | 50*x=90 | | 2+19j=20j-18+j | | 20x+1=59 | | -12+12p=10p+2p-10 | | -8-3=a | | -15v=5(-3v-4) | | x+2x+x/12=180 | | 3×+15=3+5x-8 | | 6(-5-x)=8(-x+13) | | 40x-30=55x | | 18-20k=-3k-20k-12 | | 5x+34=75 | | 7x+8x-9x-5=13 | | -4s+14=-4s-18-12 | | (5x-4)=(4x+4) | | -4s+14=—4s-18-12 | | 11/6=n+7/9 | | 16x^2+44x+73=0 | | (y/3)^2=100 | | -7q-10q+12=-17q+12 | | -7q-10q+12=17q+12 | | 16=3v-14 | | -1(-1x+-3-1x)=2x-7 | | 6-17w+19=-17w+13 | | (6x+12)=(8x-8) | | 19p-18p—6p+2p+8p=-17 |